CETIFICATION

SDG No:

MC46824

Laboratory:

Accutest, Massachusetts

Site:

BMSMC, Phase 2A Release

Matrix:

Groundwater

Assessment, Humacao, PR Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Phase 2A Release Assessment Area. The BMSMC facility is located in Humacao, PR. Samples were taken July 8-11, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC46824. Results were validated using the following quality control criteria of the methods employed (MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC46824-1	OSGP1-GWS	Groundwater	Extractable TPHC Ranges
MC46824-2	OSGP1-GWD	Groundwater	Extractable TPHC Ranges
MC46824-3	OSGP2-GWS	Groundwater	Extractable TPHC Ranges
MC46824-4	OSGP7-GWD	Groundwater	Extractable TPHC Ranges
MC46824-5	BPEB-6	AQ – Equipment Blank	Extractable TPHC Ranges

Méndez

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 22, 2016

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP1-GWS
Lab Sample ID:	MC46824-1
Matrix:	AO - Ground W

Initial Volume

865 ml

/ater MADEP EPH REV 1.1 SW846 3510C

Final Volume

2.0 ml

Date Sampled: 07/08/16 Date Received: 07/13/16 Percent Solids: n/a

Method: Project:

Run #1

Run #2

BMSMC Phase 2A Release Assessment, Humacao, PR

File ID DF Analyzed By Run #1 DE14836.D 1 07/14/16 TA Run #2	Prep Date	Prep Batch	Analytical Batch
	07/13/16	OP48136	GDE826

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.8	1.8	ug/l	
208-96-8	Acenaphthylene	ND	5.8	0.41	ug/l	
120-12-7	Anthracene	ND	5.8	0.67	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.8	0.35	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.8	0.34	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.8	0.52	ug/I	
191-24-2	Benzo(g,h,i)perylene	ND	5.8	0.43	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.8	0.41	ug/l	
218-01-9	Chrysene	ND	5.8	0.50	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.8	0.45	ug/l	
206-44-0	Fluoranthene	ND	5.8	0.39	ug/l	
86-73-7	Fluorene	ND	5.8	0.46	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.8	0.34	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.8	0.52	ug/l	
91-20-3	Naphthalene	ND	5.8	1.1	ug/l	
85-01-8	Phenanthrene	ND	5.8	0.35	ug/l	
129-00-0	Pyrene	ND	5.8	0.69	ug/l	
	C11-C22 Aromatics (Unadj.)	37.8	120	33	ug/i	JB
	C9-C18 Aliphatics	28.8	120	19	ug/l	JВ
	C19-C36 Aliphatics	41.6	120	31	ug/l	Ĵ
	C11-C22 Aromatics	37.8	120	33	ug/l	JB

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	55%		40-140%
321-60-8	2-Fluorobiphenyl	68%		40-140%
3386-33-2	1-Chlorooctadecane	48%		40-140%
580-13-2	2-Bromonaphthalene	74%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP1-GWD
Lab Sample ID: Matrix:	MC46824-2
Matrix:	AQ - Ground W

Vater MADEP EPH REV 1.1 SW846 3510C

Date Sampled: 07/08/16 Date Received: 07/13/16 Percent Solids: n/a

Method: Project:

BMSMC Phase 2A Release Assessment, Humacao, PR

							
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	DE14837.D	1	07/14/16	TA	07/13/16	OP48136	GDE826
Run #2							

	Initial Volume	Final Volume
Run #1	880 ml	2.0 ml

Kun #

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.7	1.8	ug/i	
208-96-8	Acenaphthylene	ND	5.7	0.40	ug/l	
120-12-7	Anthracene	ND	5.7	0.66	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.7	0.34	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.7	0.33	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.7	0.51	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.7	0.42	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.7	0.40	ug/l	
218-01-9	Chrysene	ND	5.7	0.49	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.7	0.44	ug/l	
206-44-0	Fluoranthene	ND	5.7	0.38	ug/l	
86-73-7	Fluorene	ND	5.7	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.7	0.33	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.7	0.51	ug/l	
91-20-3	Naphthalene	ND	5.7	1.1	ug/l	
85-01-8	Phenanthrene	ND	5.7	0.35	ug/l	
129-00-0	Pyrene	ND	5.7	0.68	ug/l	
	C11-C22 Aromatics (Unadj.)	33.8	110	33	ug/l	JB
	C9-C18 Aliphatics	22.4	110	19	ug/l	JB
	C19-C36 Aliphatics	40.5	110	31	ug/l	J
	C11-C22 Aromatics	33.8	110	33	ug/l	JВ
0.4.0.37						

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-Terphenyi	61%		40-140%
321-60-8 3386-33-2	2-Fluorobiphenyl 1-Chlorooctadecane	77% 54%		40-140% 40-140%
580-13-2	2-Bromonaphthalene	83%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP2-GWS
Lab Sample ID:	MC46824-3
Matrix:	AQ - Ground V

Vater MADEP EPH REV 1.1 SW846 3510C Date Sampled: 07/11/16 Date Received: 07/13/16 Percent Solids: n/a

Method: Project:

BMSMC Phase 2A Release Assessment, Humacao, PR

	Run #1 Run #2	File ID DE14848.D	DF 1	Analyzed 07/15/16	By TA	Prep Date 07/13/16	Prep Batch OP48136	Analytical Batch GDE827
--	------------------	----------------------	---------	-------------------	----------	-----------------------	-----------------------	----------------------------

Run #1 Run #2	Initial Volume 810 ml	Final Volume 2.0 ml		-			
CARNO	Compand	Damile	זמ	M	TT-it-		

CAS No.	Compound	Result	RL	MDL	Units	Q	
83-32-9	Acenaphthene	ND	6.2	1.9	ug/l		
208-96-8	Acenaphthylene	ND	6.2	0.44	ug/l		
120-12-7	Anthracene	ND	6.2	0.71	ug/l		
56-55-3	Benzo(a)anthracene	ND	6.2	0.37	ug/l		
50-32-8	Benzo(a)pyrene	ND	6.2	0.36	ug/l		
205-99-2	Benzo(b)fluoranthene	ND	6.2	0.55	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	6.2	0.46	ug/l		
207-08-9	Benzo(k)fluoranthene	ND	6.2	0.44	ug/l		
218-01-9	Chrysene	ND	6.2	0.53	ug/l		
53-70-3	Dibenz(a,h)anthracene	ND	6.2	0.48	ug/l		
206-44-0	Fluoranthene	ND	6.2	0.41	ug/l		
86-73-7	Fluorene	ND	6.2	0.49	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	6.2	0.36	ug/l		
91-57-6	2-Methylnaphthalene	ND	6.2	0.56	ug/l		
91-20-3	Naphthalene	ND	6.2	1.2	ug/l		
85-01-8	Phenanthrene	ND	6.2	0.38	ug/l		
129-00-0	Pyrene	ND	6.2	0.74	ug/l		
	C11-C22 Aromatics (Unadj.)	52.6	120	35	ug/l	JB	
	C9-C18 Aliphatics	24.7	120	21	ug/l	JB	
	C19-C36 Aliphatics	66.7	120	33	ug/l	J	
	C11-C22 Aromatics	52.6	120	35	ug/l	JB	

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1	o-Terphenyl	55%		40-140%
321-60-8	2-Fluorobiphenyl	71%		40-140%
3386-33-2	1-Chlorooctadecane	52%		40-140%
580-13-2	2-Bromonaphthalene	77%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample	e ID: OSGP7-GWD
Lab Sample I	D: MC46824-4
Matriv	AO - Ground W

Ground Water

Date Sampled: 07/11/16 07/13/16 Date Received:

Method: Project:

MADEP EPH REV 1.1 SW846 3510C BMSMC Phase 2A Release Assessment, Humacao, PR Percent Solids: n/a

- 1	Run #1	File ID DE14849.D	DF 1	Analyzed 07/15/16	By TA	Prep Date 07/13/16	Prep Batch OP48136	Analytical Batch GDE827
- lı	Run #2							

			-	
1	Initial Volume	Final Volume		
1	IIIIIII TOICIIIO	I mai votanto		
Run #1	980 ml	2.0 ml		
Run #2				

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	5.1	1.6	ug/l	
208-96-8	Acenaphthylene	ND	5.1	0.36	ug/i	
120-12-7	Anthracene	ND	5.1	0.59	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.1	0.31	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.1	0.30	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.1	0.46	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.1	0.38	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.1	0.36	ug/l	
218-01-9	Chrysene	ND	5.1	0.44	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.1	0.40	ug/l	
206-44-0	Fluoranthene	ND	5.1	0.34	ug/l	
86-73-7	Fluorene	ND	5.1	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.1	0.30	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.1	0.46	ug/l	
91-20-3	Naphthalene	ND	5.1	0.98	ug/I	
85-01-8	Phenanthrene	ND	5.1	0.31	ug/l	
129-00-0	Pyrene	ND	5.1	0.61	ug/l	
	C11-C22 Aromatics (Unadj.)	30.0	100	29	ug/l	JB
	C9-C18 Aliphatics	21.9	100	17	ug/l	JB
	C19-C36 Aliphatics	ND	100	28	ug/l	<i>3</i> –
	C11-C22 Aromatics	30.0	100	29	ug/l	JB
			_		8	3 -

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	54% 64% 66% 69%		40-140% 40-140% 40-140% 40-140%
	-			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

TA

Prep Date

07/15/16

Page 1 of 1

Client	Sample ID:	BPEB-6
7 .1. //		3.400.400

File ID

920 ml

DE14850.D

Lab Sample ID:

MC46824-5

Date Sampled: 07/08/16

Matrix:

AQ - Equipment Blank

DF

2.0 ml

1

Date Received: 07/13/16

Q

Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC Phase 2A Release Assessment, Humacao, PR

Analyzed

07/15/16

Prep Batch **Analytical Batch** OP48136 **GDE827**

Run #1 Run #2

à			
	Initial Volume	772	Volume
	initial volume	rmai	vonime
			7 04 1

Run #1 Run #2

CAS No.	CAS No. Compound		RL	MDL	Units	
83-32-9	Acenaphthene	ND	5.4	1.7	ug/l	
208-96-8	Acenaphthylene	ND	5.4	0.39	ug/l	
120-12-7	Anthracene	ND	5.4	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.4	0.33	ug/l	
50-32-8	Benzo(a) pyrene	ND	5.4	0.32	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.4	0.49	ug/I	
191-24-2	Benzo(g,h,i)perylene	ND	5.4	0.40	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.4	0.38	ug/l	
218-01-9	Chrysene	ND	5.4	0.47	ug/l	
53-70-3	Dibenz(a,h)anthracene	ND	5.4	0.42	ug/l	
206-44-0	Fluoranthene	ND	5.4	0.36	ug/l	
86-73-7	Fluorene	ND	5.4	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.4	0.32	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.4	0.49	ug/l	
91-20-3	Naphthalene	ND	5.4	1.0	ug/l	
85-01-8	Phenanthrene	ND	5.4	0.33	ug/l	
129-00-0	Pyrene	ND	5.4	0.65	ug/l	
	C11-C22 Aromatics (Unadj.)	ND	110	31	ug/l	
	C9-C18 Aliphatics	ND	110	18	ug/l	
	C19-C36 Aliphatics	ND	110	29	ug/l	
	C11-C22 Aromatics	ND	110	31	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	Limits	
84-15-1	o-Terphenyl	43%		40-14	10%	
321-60-8	2-Fluorobiphenyl	66%		40-14	10%	

3386-33-2

580-13-2

MDL = Method Detection Limit

47%

68%

J = Indicates an estimated value

40-140%

40-140%

1-Chlorooctadecane

2-Bromonaphthalene

ND = Not detected

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

ā	ACCL	TEST					CHAI	IN (OF (cus	TC	D	ľ					POA	965	ISL:	מככ	ırı						F 🛴
		NE					IG D'Angelo Dr TEL, SC	344142	ing Carr, 1 50 FAX	. 508-4E	gh, M. 1-7753	A 0175	1				1	1 1					F	 	-/	10)	3	824
/Disks		eporting	informat	tion Palette	Project Name	STALL STALL	Project	Inform	etion	200	Hijos	910	(TEX	152		SERIE.		Req	usota	d Ara	lysis	1997			street)			Matrix Codes
Company																		1										
Anders	non Mulhol	and & Ass	ociates		SMSMC Ph	ton 2A Reisase	Assessmen	-			_	-	_			- 1	1	Ι.		1			1	1	Į.			DW - Drynny Wei GW - Ground Wei
27'00 W	/outchester	Avenue 5	Suite 41	7					Industrial Industrial		-					-	ĸ	1			1		1		1			WW - Waser SW - Burtines Wije
Cay		No.	-	Zep	Calif		See		y Hame	(1°		-		700)	_		5		1					1		ľΙ		SO - Set SL - Statue
Purcha Protect &		WY .		10577	Humacao		PR	_									5					1	1	ŀ	1			SED-Sedman) CI - CII
	1 - 10 5 1 E. m.			E-mail	Protect #			Street A	وجوائتك								MADEF						ł	1		1 1		LIC - Other Liquit AIR - Air
Phone s	y Taylor			Total di	Chart Purdram	Circler 9	-	Cay				S leader	_	_	Zο		Į.		ŀ				1				- 1	SOL - Down Solo
914	251-0400	or name													_									1				YVF - Wipe FB-Field Dignit
	ISS PROFFME(S)			Phone d	Project Manage			America	τ							\neg	Ammatics							1	Ì			ES-Equipment (Star RS-Rinas (Sept):
N. R	Ivers, R. St	uert, R. 01	Railty, T	Taylor	Terry Taylor		Collection																ſ	1				T8-Top Dayre
						-	- Committee		1		\vdash	T	1.1	1,	2		223								1		ŀ	
==		/ Point of C		442	MECHICS Was d	Des .	The	Sampled by	libera.	4-1-1	. ₂	9	Cato		HCOM		C11-C22							1				LAS USE ONLY
-1	OSGP	-6	WS	ar		7-8-16	1045	イエ	GW	7	121		П	П	П	П	X						1				\neg	
_2	OSGP	-0	wt	05681	-EMD	7-8-16		74	GW	1	†⊋†		\vdash	Н	H	11	X	Н			_	_	\vdash				-	
-3	OSGP	2-6	ws			7-11-16		TT	GW	1	1	+	H	\forall	+	+	x	\vdash		_	\vdash		-		\vdash	-	\dashv	
- 7	OSGP	7-6	WD			7-(1-16	1355		GW	_	11	+	+	+	+	╁	Ŷ	 	\dashv		\vdash	\vdash	-		-	-	\dashv	17.5
1		- 13	HV			L-Ji-10	1333	ш	1599	2	┦	+	1	+	+	╁┼	^	\vdash	-	_	_	-	\vdash	<u> </u>	\vdash	-		160
-						-				<u> </u>	H		-	++	+	++	_		\rightarrow	_	_	<u> </u>		<u> </u>	\square	_	4	
\rightarrow			-					<u> </u>			Н	44	4	44	4	\sqcup			\rightarrow			_				\perp	_	
-+										<u>L</u> _	Ц	Ш	1	П		Ц											_ 1	
-											Ш	Ш	. 1			Ш										\neg	Т	
	-			V							П		Т	П	Т	П											\neg	
. 1		•		100							П	\top	\top	П		\sqcap		\Box								\neg	7	
	4.										H	+	+	††	+	††			\neg	\neg				Н		-	┰	
-5	398	B	ART	de la companya		7-8-16	730	П	EB	計算	2	7 2	9 6	1 11	1 12 12 12 12 12 12 12 12 12 12 12 12 12	ES .	X		33		9E/3	SES		-72	22			
- E	Turners	and Time (Bu			Control Control			Separate S				rakte				- 1	Sec.		NAME OF	Sec.	200	Com	merks./	Specie	Indiae	lone (1000	
1	1	5	4	in array!	SENIE	leeswar,	M	冒	ULLTI (ed "B" (L Lavel 3-4	evel 2			j	ASP C	_		-		TVIT	IAL.	G C	SU	MP3	и 139	197		
	2 Chay Stage 2 Chay Stage			LASEL V	EBIERA DE	MERICATION	W		Li Reduci Communici		er 'A''	- Res.	Ē		D F=1		_	_		D.	Ð. V		BH	675	INT.	71/1		
I/	1 Day Calls	GENCY It days such	BN VAL	thirt .			•		!	Communica NJ Rinduca	ek TO	Personal Personal	001	IC Sun Iumma	my • P	wite R	Law de	.										
and a	1	-		Prop. There	34	aple Custody ma			low sect	None Mar	mphy	chan	ge pe	****	Hon, i	includ	ing or	ourlor 4	allvery		-	-	SEESE	WOW	1/2	ter to	85/4/	-07-00-00-0
	1007	Mr		7-12-	168300	number of the	Fed	E	X	- 1	7 7	-	lly:			7	ے,	1		7	17	34		l Olyc	K			
Referen				Clarke Finance		Transport Styr.					4	risched E	y:			_/	>		٦,	71-		<i>'</i> ~	<u> </u>	l Myc	vz		-0	1.2 5.1°c
	hed by:			Date Flores		Despised By:				\dashv	- ايوست	723	_	<u> </u>	4	0	_	Pi		milion)		_	-		On tro		مارخد	
		_	-			<u> </u>					_2	42		26	_	0 .	استان اد			<u> </u>					8	5,3	1/2	Tra c

MC46824: Chain of Custody Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

MC46824

Laboratory: Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples: 5

Location:

BMSMC, Phase 2A Release Assessment Area

Humacao, PR

SUMMARY:

Five (5) samples were analyzed for Volatiles TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below

the reporting limits. Laboratory qualified the results as JB, no further

qualification required.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

July 22, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC46824-1

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/8/2016 Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.8	ug/l	1	-	U	Yes
Acenaphthylene	5.8	ug/l	1	-	U	Yes
Anthracene	5.8	ug/l	1	-	U	Yes
Atrazîne	5.8	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.8	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.8	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.8	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.8	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.8	ug/l	1	-	U	Yes
Chrysene	5.8	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.8	ug/l	1	-	U	Yes
Fluoranthene	5.8	ug/!	1	-	U	Yes
Fluorene	5.8	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.8	ug/l	1	-	U	Yes
2-Methylnaphthalene	5.8	ug/l	1	-	U	Yes
Naphthalene	5.8	ug/l	1	-	U	Yes
Phenanthrene	5.8	ug/l	1	_	U	Yes
Pyrene	5.8	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	37.8	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	28.8	ug/i	1	JB	JB	Yes
C19-C36 Aliphatics	41.6	ug/l	1	J	J	Yes
C11-C22 Aromatics (Unadj.)	37.8	ug/l	1	JB	JB	Yes

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.7	ug/l	1	-	U	Yes
Acenaphthylene	5.7	ug/l	1	-	U	Yes
Anthracene	5.7	ug/l	1	-	U	Yes
Atrazine	5.7	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.7	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.7	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.7	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.7	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.7	ug/l	1	-	U	Yes
Chrysene	5.7	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.7	ug/l	1	-	U	Yes
Fluoranthene	5.7	ug/l	1	-	U	Yes
Fluorene	5.7	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.7	ug/l	1	-	U	Yes
2-Methylnaphthalene	5.7	ug/l	1	-	Ų	Yes
Naphthalene	5.7	ug/l	1	-	U	Yes
Phenanthrene	5.7	ug/l	1	-	U	Yes
Pyrene	5.7	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	33.8	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	22.4	ug/l	1	JB	JB	Yes
C19-C36 Aliphatics	40.5	ug/l	1	J	J	Yes
C11-C22 Aromatics (Unadj.)	33.8	ug/l	1	JB	JB	Yes

. . . .

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/11/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	6.2	ug/l	1	-	U	Yes
Acenaphthylene	6.2	ug/l	1	-	U	Yes
Anthracene	6.2	ug/l	1	-	U	Yes
Atrazine	6.2	ug/l	1	-	U	Yes
Benzo(a)anthracene	6.2	ug/l	1	-	U	Yes
Benzo(a)pyrene	6.2	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	6.2	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	6.2	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	6.2	ug/l	1	-	U	Yes
Chrysene	6.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	6.2	ug/l	1	-	U	Yes
Fluoranthene	6.2	ug/l	1	-	U	Yes
Fluorene	6.2	ug/l	1	-	Ų	Yes
Indeno(1,2,3-cd)pyrene	6.2	ug/l	1	-	U	Yes
2-Methylnaphthalene	6.2	ug/l	1	-	U	Yes
Naphthalene	6.2	ug/l	1	-	U	Yes
Phenanthrene	6.2	ug/l	1	-	U	Yes
Pyrene	6.2	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	52.6	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	24.7	ug/l	1	JB	JB	Yes
C19-C36 Aliphatics	66.7	ug/l	1	1	J	Yes
C11-C22 Aromatics (Unadj.)	52.6	ug/l	1	JB	JB	Yes

.

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/11/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acenaphthene	5.1	ug/l	1	-	U	Yes
Acenaphthylene	5.1	ug/l	1	-	U	Yes
Anthracene	5.1	ug/l	1	-	U	Yes
Atrazine	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.1	ug/l	1	**	U	Yes
Benzo(g,h,i)perylene	5.1	ug/l	1	100	U	Yes
Benzo(k)fluoranthene	5.1	ug/l	1	-	U	Yes
Chrysene	5.1	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.1	ug/l	1	-	U	Yes
Fluoranthene	5.1	ug/l	1	-	U	Yes
Fluorene	5.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.1	ug/l	1	~	U	Yes
2-Methylnaphthalene	5.1	ug/l	1	-	U	Yes
Naphthalene	5.1	ug/l	1	-	U	Yes
Phenanthrene	5.1	ug/l	1	-	U	Yes
Pyrene	5.1	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	30.0	ug/l	1	JB	JB	Yes
C9-C18 Aliphatics	21.9	ug/l	1	JB	JB	Yes
C19-C36 Aliphatics	100	ug/l	1	-	U	Yes
C11-C22 Aromatics (Unadj.)	30.0	ug/l	1	JB	JВ	Yes

Sample location: BMSMC Phase 2A Release Assessment, Humacao, PR

Sampling date: 7/8/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acenaphthene	5.4	ug/l	1	-	U	Yes	
Acenaphthylene	5.4	ug/l	1	-	U	Yes	
Anthracene	5.4	ug/l	1	-	U	Yes	
Atrazine	5.4	ug/l	1	-	U	Yes	
Benzo(a)anthracene	5.4	ug/l	1	-	U	Yes	
Benzo(a)pyrene	5.4	ug/l	1	-	U	Yes	
Benzo(b)fluoranthene	5.4	ug/l	1	-	U	Yes	
Benzo(g,h,i)perylene	5.4	ug/l	1	-	U	Yes	
Benzo(k)fluoranthene	5.4	ug/l	1	-	U	Yes	
Chrysene	5.4	ug/l	1	-	ប	Yes	
Dibenzo(a,h)anthracene	5.4	ug/l	1	-	U	Yes	
Fluoranthene	5.4	ug/l	1	-	U	Yes	
Fluorene	5.4	ug/i	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	5.4	ug/l	1	-	U	Yes	
2-Methylnaphthalene	5.4	ug/l	1	-	U	Yes	
Naphthalene	5.4	ug/l	1	-	U	Yes	
Phenanthrene	5.4	ug/l	1	-	U	Yes	
Pyrene	5.4	ug/l	1	-	U	Yes	
C11-C22 Aromatics (Unadj.)	110	ug/l	1	-	U	Yes	
C9-C18 Aliphatics	110	ug/l	1	-	U	Yes	
C19-C36 Aliphatics	110	ug/l	1	-	U	Yes	
C11-C22 Aromatics (Unadj.)	110	ug/l	1	-	U	Yes	

DATA REVIEW WORKSHEETS

OCARBON (EPHs) PACKAGE were created to delineate required using professional judgment to make f the data users. The sample results documents in the following order of OF EXTRACTABLE PETROLEUM
using professional judgment to make f the data users. The sample results documents in the following order of
nvironmental Protection, Revision 1.1 by the USEPA Hazardous Wastes sisted on the data review worksheets noted.
es data package formance data summarized. The data
matrix: _Groundwater
boratory Control Spikes eld Duplicates librations mpound Identifications mpound Quantitation antitation Limits
Comments: _MADEP_EPH,_REV_1.1

			and/or see below
I. DATA COMP A. Data	PLETNESS Package:		
MISSING INFORMA	TION DATE LAB.	CONTACTED	DATE RECEIVED
	20 2002		
B. Other			Discrepancies:

All criteria were metX
Criteria were not met and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	DATE	ACTION
	SAMPLED	EXTRACTED	ANALYZED	
Samples	extracted and ar	nalyzed within me	thod recommend	ed holding time

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature	(Criteria: 4 + 2 °C):	5.3°C	

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

All criteria were metX Criteria were not met and/or see below										
CALIBRAT	CALIBRATIONS VERIFICATION									
Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.										
Date of initial calibration:06/22/16										
Dates of initial calibration verification:06/22/13										
Inst	rument ID num	bers:GCD	E							
Mat	Matrix/Level:AQUEOUS/MEDIUM									
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED						
	, com		11 3, 70130, 700, 1	AITEOTED						
	nitial and conti	nuing calibration me	et method specific requ	uirements						

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

 At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and

DATA REVIEW WORKSHEETS

- at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects.

If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_06/22/16
Dates of continuing calibration verification:_	07/14/16;_07/15/16
Dates of final calibration verification:	07/14/16;_07/15/16
Instrument ID numbers:GCDE	
Matrix/Level:_SOIL/AQUEOUS/MEDIUM	

DATE	LAB FILE	ANALYTE	ALYTE CRITERIA OUT SAMPLE	
	ID#		RFs, %RSD, %D, r	AFFECTED
	Initial and conti	nuing calibration me	et method specific requ	uirements

A separate worksheet should be filled for each initial curve

		С	riteria were not m	All criteria were met net and/or see below	
VA. BLANK	ANALYSIS RE	ESULTS (Se	ctions 1 & 2)		
magnitude of a blanks associal problems with evaluated to d case, or if the Method Blank	contamination pated with the sa any blanks ex letermine wheth problem is an	problems. The amples, inclusives, all data are or not the isolated occurrence after sample	e criteria for evaluding trip, equipm a associated with ere is an inheren urrence not affects s suspected of l	etermine the existence fuation of blanks apply or nent, and laboratory blanks the case must be care to variability in the data for thing other data. A Laborateing highly contaminate	nly to ks. If efully r the atory
List the containseparately.	mination in the	blanks belov	w. High and low	levels blanks must be tre	ated
Laboratory bla	nks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_CASES_DES	SCRIBED_IN_T DP48089-MB_	HIS_DOCUM _Aqueous/lov	//ENT vC11-C22_Ard C9-C18_Aliph	RITERIA_EXCEPT_IN_T matics_(Unadj.)_30.5_ug atics18.5_ug maticis30.5_ug]/l ug/l_
Note:	limits. Analyte:	s detected s. Laborato	in sample batch	centration below the repo above MDL but below results as JB, no fu	the
Field/Trip/ <u>Equ</u>	pment				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
				WITH_THIS_DATA_PAC	
	0.000				

DATA REVIEW WORKSHEETS

All criteria were met	
Criteria were not met and/or see belowX	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met		
Criteria were not met and/or see below	Х	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

Samples and QC shown here apply to the above method

Lab	Lab					
Sample ID	File ID	ı	S1 a	S2 a	S3 b	S4 a
MC46824-1	DE148	36.D	55	68	48	74
MC46824-2	DE148	37.D	61	77	54	83
MC46824-3	DE148	348.D	55	71	52	77
MC46824-4	DE148	349.D	54	64	66	69
MC46824-5	DE148	350.D	43	66	47	68
OP48136-BS	DE148	33.D	66	71	64	68
OP48136-BSD	DE148	34.D	69	78	68	79
OP48136-MB	DE148	35.D	72	79	71	85
Surrogate Compounds		Recov Limits	ery			
S1 = o-Terphenyl S2 = 2-Fluorobipheny S3 = 1-Chlorooctade S4 = 2-Bromonaphth	cane	40-140 40-140 40-140 40-140)%)%			
•						

(a) Recovery from GC signal #1

(b) Recovery from GC signal #2

Note: SURROGATE STANDARDS RECOVERIES WITHIN LABORATORY CONTROL LIMITS.

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

DATA REVIEW WORKSHEETS

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met
Criteria were not met and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

TION

spike duplicate used to assess accuracy. BS/BSD % recoveries and RPD within laboratory control limits. No action taken.

Note: No MS/MSD analyzed with this sample batch. Blank spike/Blank

		Crite	eria were	All criteria v	were met belowN/A_
No action is taken or informed professional conjunction with other data. In those instantial affect only the samp However, it may be daystematic problems associated samples.	al judgment, the er QC criteria and nces where it can le spiked, the qual etermined throug	data il deterno de	reviewer mine the letermine ion shoul MS/MSD (may use the MS/I need for some qua d that the results of d be limited to this results that the labor	MSD results in alification of the of the MS/MSD is sample alone. Oratory is having
2. MS/MSD – Ur	nspiked Compour	nds			
List the concentration compounds in the un					
COMPOUND	CONCENTRATI SAMPLE	ON MS	MSD	%RPD	ACTION
Criteria: None specifi	ed, use %RSD <	50 as	professio	nal judgment.	
Actions:					

MSD, use professional judgment to qualify sample data.

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or

A separate worksheet should be used for each MS/MSD pair.

		All criteria were metX Criteria were not met and/or see below	
	VIII.	LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS	
matric	This data is generated to determine accuracy of the analytical method for various natrices.		
	1.	LCS Recoveries Criteria	
		List the %R of compounds which do not meet the criteria	
LCS II)	COMPOUND % R QC LIMIT ACTION	
LCS	S_RECO	OVERY_WITHIN_LABORATORY_CONTROL_LIMTS	
	Criteria *	Refer to QAPP for specific criteria. The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%.	
		s on LCS recovery should be based on both the number of compounds to outside the %R and RPD criteria and the magnitude of the excedance of	
the as: If the 'for the If more qualify	sociated %R of the affected than the social section in the section	the analyte is > UL, qualify all positive results (j) for the affected analyte in disamples and accept nondetects. The analyte is < LL, qualify all positive results (j) and reject (R) nondetects disamples analyte in the associated samples. The all the compounds in the LCS are not within the required recovery criteria, sitive results as (J) and reject nondetects (R) for all target analyte(s) in the mples.	
2.	Freque	ency Criteria:	
per ma If no, the eff	atrix)? <u>Y</u> the data fect and	nalyzed at the required frequency and for each matrix (1 per 20 samples (es or No. The may be affected. Use professional judgment to determine the severity of liqualify data accordingly. Discuss any actions below and list the samples uss the actions below:	

		Crite	All crit ria were not met and/		re met pelowN/A_
IX. FIELD/LAE	BORATOR	Y DUPLICATE PR	ECISION		
Sample IDs:			Matrix:		
overall precision. results may have laboratory perform	These and more vanance. It is ter matrice.	alyses measure bo riability than labo also expected tha	taken and analyzed oth field and lab pre- oratory duplicates what soil duplicate result says associated with col	cision; ! hich m s will h	therefore, the easures only ave a greater
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
5.5 de 1145 o					
RPD used to asse	ss precisio	on. RPD within labo	is data package. BS/ pratory and validation tected at a concentra	guidan	ce document
RPD ± 30% for aq	ueous sam	ples, RPD <u>+</u> 50 %	ct-specific informatio for solid samples if r RPD criteria is double	esults a	are ≥ SQL.
SQL = soil quantit	ation limit				
Actions:					
If both the samp	le and the	duplicate results	are nondetects (N	D), the	RPD is not

calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - o Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - o The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - o Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

		Criteria		teria were met nd/or see below _			
2.	If target analytes ar laboratory resubmit the		correctly identi	fied, request tha	at the		
3.	Breakthrough determevaluated for potentially recovery of the fraction and aromatic fraction naphthalene or 2-methe total concentration LCSD, fractionation NOTE:	I breakthrough on a sectionation surrogate naphthalene and 2-mas of the LCS and Lethylnaphthalene in ton for naphthalene	sample specific in (2-bromonaphth) (2-bromonaphth) nethylnaphthalen (CSD. If either the aliphatic from 2-methylna) don all archiver	basis by evaluatinal alene) and on a le in both the alip the concentration exceeds to the le in	ng the batch ohatic on of 5% of LCS		
	Comments:Concer_concentration_for_n	methylnaphthalene summation of the aliphatic fraction aromatic fraction. tration_in_the_alipha	in the LCS/LC e concentration d the concent	on detected in ration detected in % of the total	the		
					_		
4.	Fractionation Check Standard – A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analytic contained in the fractionation check solution, excluding n-nonane, the Percent Recovery must be between 40 and 140%. A 30% Recovery is acceptable for nonane.						
	Is a fractionation chec	k standard analyzed	?	Yes? or N	10?		
	Comments: Not applie	cable.					

All criteria were met __X___
Criteria were not met and/or see below _____

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

MC46824-1

EPH (C11 – C22, Aromatics)

RF = 124800

[] = (2039272)/(124800)

[] = 16.34 ppb Ok

MC46824-1

EPH (C19 - C36, Aliphatics)

RF = 77820

[] = (1399248)/(77820)

[] = 17.98 ppb Ok

DATA REVIEW WORKSHEETS

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION		
	- 282 - 292			
		+		
		1		
2000 - 100 -				
	 			
	500			
	1			
	2			

	B			

If dilution was not performed, affected samples/compounds:	results	(J)	for	the	affected	compounds.	List the
	X100_51200				· o		